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Design and Model

10.1. USES OF DESIGN AND MODEL IN SAMPLING

In the design-based approach to survey sampling, the values of a variable of
interest (y-values) of the population are viewed as fixed quantities and the selection
probabilities introduced with the design are used in determining the expectations,
variances, biases, and other properties of estimators. In the model-based approach,
on the other hand, the values of the variables of interest in the population are
viewed as random variables, and the properties of estimators depend on the joint
distribution of these random variables.

One reason for the historical reliance on design-based methods in sampling, in
addition to the elimination of personal biases in selecting the sample, is that in
many cases—and especially with natural populations—very little may be known
about the population. Most researchers find it reassuring in such a situation to
know that the estimation method used is unbiased no matter what the nature of
the population itself. Such a method is called design-unbiased: The expected value
of the estimator, taken over all samples which might be selected, is the correct
population value. Design-unbiased estimators of the variance, used for constructing
confidence intervals, are also available for most such designs.

One area of sampling in which the model-based approach has received con-
siderable attention is in connection with ratio and regression estimation. In many
sampling situations involving auxiliary variables, it seems natural to researchers to
postulate a theoretical model for the relationship between the auxiliary variables
and the variable of interest. A model can, of course, also be assumed for pop-
ulations without auxiliary variables. For example, if the N variables Y1, . . . , YN

can be assumed to be independent and identically distributed, many standard sta-
tistical results apply without reference to how the sample is selected. However,
it is difficult to cite examples of survey situations in which a model of indepen-
dent, identically distributed y-values can be assumed with confidence. In fact, a
pervasive problem with the model approach to sampling is that for many real pop-
ulations, attempts to specify models have been far from adequate. Typically, the
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132 design and model

models become mathematically complex while still not being suitably realistic.
In particular, any model assuming that the y-values are independent (or have an
exchangeable distribution) ignores the tendency in many populations for nearby or
related units to be correlated.

Moreover, many survey programs need to produce results that will be used by
people of widely different viewpoints and often conflicting preferences regarding
whether an estimate should be higher or lower. For example, a demographic survey
may be used to allocate governmental resources from one district to another; a
fishery survey may be used to determine the amount of commercial catch allowed.
It would be hard in such a situation to propose a model that would seem acceptable
or realistic to all interested parties. In such a situation, the elimination of ordinary
human selection biases through some sort of random selection procedure can be
a powerful pragmatic argument in favor of an approach that is at least partially
design-based.

With some populations, however, experience may have established convincingly
that certain types of patterns are typical of the y-values of that type of population.
For example, in spatially distributed geological and ecological populations, the
y-values of nearby units may be positively correlated, with the strength of the rela-
tionship decreasing with distance. If such tendencies are known to exist, they can
be used in obtaining efficient predictors of unknown values and in devising efficient
sampling procedures. This model-based approach has been prevalent in sampling
for mining and geological studies, in which the cost of sampling is particularly
high and the economic incentive is strong for obtaining the most precise possible
estimates for a given amount of sampling effort.

Sources of nonsampling error must be modeled if they are to be taken into
account. Problems of differential response, missing data, measurement errors, and
detectability must be modeled in some way in order to adjust for biases and to
assess the uncertainty of estimates.

10.2. CONNECTIONS BETWEEN THE DESIGN AND MODEL
APPROACHES

Let y = (y1, y2, . . . , yN) denote the vector of y-values associated with the N units
of the population. From the model viewpoint, these y-values are random variables
with some joint distribution F . Let P(s) denote the probability under the design of
selecting sample s, where s is a sequence or subset of the units in the population.

From the sample of n units, one wishes to estimate or predict the value of some
quantity y0, where y0 may, for example, be the population mean, the population
total, or the y-value at a unit not in the sample. The predictor or estimator ŷ0 is a
function of the y-values of the sample.

An estimator or predictor ŷ0 is said to be design-unbiased for y0 if its conditional
expectation, given the realization of the N population y-values, is the realized value
of y0, that is, if

E(ŷ0|y) = y0
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connections between the design and model approaches 133

Notice that, although y0 may be viewed as a random variable, with a distribution
determined by F , the design-unbiased estimator ŷ0 is unbiased under the design
for the realized value of y0 —the actual value that y0 has taken on at the time of
the survey. The distribution F , which produced the population y-values, is thus
irrelevant to this unbiasedness.

An estimator or predictor ŷ0 is said to be model-unbiased for y0 if, given any
sample s, the conditional expectation of ŷ0 equals the expectation of y0, that is, if

E(ŷ0|s) = E(y0|s)
No matter what sampling design gave rise to the sample s, the model-unbiased
predictor ŷ0 is unbiased under the population distribution F for y0 given the sam-
ple s obtained. The design that produced the sample s is thus irrelevant to this
unbiasedness.

An estimator or predictor ŷ0 is unbiased (i.e., unconditionally unbiased) for y0

if the expectation of ŷ0 equals the expectation of y0, that is, if

E(ŷ0) = E(y0)

Any estimator that is either design-unbiased or model-unbiased for y0 will be
(unconditionally) unbiased for y0, by a well-known property of expectation.

Thus, if the desired end is simply unbiasedness, it can be achieved through
either the design or the model approach. However, some authors philosophically
demand one or the other types of unbiasedness—design unbiasedness, so that
assumptions about the population are not relied upon, or model unbiasedness, so
that the particular sample obtained is taken into account.

The mean square error associated with predicting y0 with ŷ0 is

E(y0 − ŷ0)
2

the expectation being taken with respect to both the distribution of the population
values and the design. If ŷ0 is unbiased for y0, the mean square error is the variance
of the difference:

E(y0 − ŷ0)
2 = var(y0 − ŷ0)

From the model viewpoint, interest focuses on the conditional mean square error,
given the sample s. If ŷ0 is model-unbiased for y0, this mean square error is a
conditional variance:

E[(y0 − ŷ0)
2|s] = var(y0 − ŷ0|s)

From the design viewpoint, the concern is with the conditional mean square error
given the realized population y-values. When ŷ0 is design-unbiased for y0, this
conditional mean square error is

E[(y0 − ŷ0)
2|y] = var(ŷ0|y)
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134 design and model

If ŷ0 is design-unbiased, the unconditional mean square error may be written

E(y0 − ŷ0)
2 = E[var(ŷ0|y)]

If ŷ0 is model-unbiased, the unconditional mean square error may be written

E(y0 − ŷ0)
2 = E[var(y0 − ŷ0|s)]

Estimators of variance may in similar fashion be design- or model-unbiased.
A variance estimator that is either design-unbiased or model-unbiased will be
unconditionally unbiased. Thus, with the design simple random sampling, the
usual estimator

v̂ar(ŷ) =
(

N − n

N

)
s2

n

which is design-unbiased for var(y), is unbiased for the true mean square error no
matter what distribution may give rise to the population.

10.3. SOME COMMENTS

A main result of the preceding section is that a sampling strategy is unconditionally
unbiased if it is either design-unbiased or model-unbiased. Even so, the two
approaches may lead to conflicting recommendations. An assumed-ratio model
may suggest purposive selection of the units with the highest x -values; such a pro-
cedure is certainly not design-unbiased. The sample mean may be design-unbiased
under simple random sampling; but under an assumed model the sample mean
for the particular sample selected may not be model-unbiased. Some advantages
of a design-based approach include obtaining unbiased or approximately unbiased
estimators (and estimators of variance) that do not depend on any assumptions
about the population—a sort of nonparametric approach—obtaining estimates
acceptable (if grudgingly) by users with differing and conflicting interests, avoiding
ordinary human biases in selection, obtaining fairly representative or balanced
samples with high probability, and avoiding the potentially disastrous effects
of important but unknown auxiliary variables. Some benefits of a model-based
approach include assessing the efficiency of standard designs and estimators under
different assumptions about the population, suggesting good designs to use—or
good samples to obtain—for certain populations, deriving estimators that make the
most efficient use of the sample data, making good use of auxiliary information,
dealing with observational data obtained without any proper sampling design, and
dealing with missing data and other nonsampling errors.

For a real population, however, even the best model is something one not so
much believes as tentatively entertains. Under the assumption of the model, one
can outline an efficient course of action in carrying out a survey. It is also nice
to be able to say that if that assumption is wrong, the strategy still has certain
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likelihood function in sampling 135

desirable properties—for example, the estimator is still unbiased, if less efficient.
One approach combining design and model considerations uses the best available
model to suggest an efficient design and form of estimator of the population mean
or total while seeking unbiasedness or approximate unbiasedness under the design,
and using estimators of variance that are robust against departures from the model.
With this approach, one looks for a strategy with low unconditional mean square
error, subject to the required (exact or approximate) design unbiasedness. Such an
approach has been useful in the development of such survey methods as the gener-
alized ratio and regression estimators under probability designs. “Model-assisted”
strategies such as these, using models to suggest good sampling designs and infer-
ence procedures but seeking to have good design-based properties that provide
robustness against any possible departures from the assumed model, are described
in depth in Särndal et al. (1992).

Reviews of the ideas and issues involved in the relationship of design and model
in sampling are found in Cassel et al. (1977), Godambe (1982), Hansen et al. (1983),
Hedayat and Sinha (1991), Särndal (1978), Smith (1976, 1984), Sugden and Smith
(1984), M. E. Thompson (1997), and Thompson and Seber (1996).

10.4. LIKELIHOOD FUNCTION IN SAMPLING

In the design-based, fixed-population approach to sampling, the values (y1, . . . , yN )
of the variable of interest are viewed as fixed or given for all units in the pop-
ulation. With this approach, the unknown values yi of the variable of interest in
the population are the unknown parameters. For designs that do not depend on
any unobserved y-values the likelihood function is constant, equal to the probabil-
ity of selecting the sample obtained, for every potential value y of the population
consistent with the sample data (Basu 1969).

In the model-based approach, the population values y are viewed as realizations
from a stochastic distribution. Suppose that there is a population model f (y; θ),
giving the probability that the y-values in the population take on the specific set of
values y = (y1, y2, . . . , yN). This probability may depend on an unknown param-
eter θ as well as on the auxiliary variables. The distribution may also depend on
auxiliary variables. However, the dependence of the data, sampling design, and
model on auxiliary variables will be left implicit in this section for notational sim-
plicity. Also for ease of notation, assume that the variable of interest is a discrete
random variable, so that sums rather than integrals are involved in the likelihood
function.

The likelihood function is the probability of obtaining the observed data as a
function of the unknown parameters. The data in sampling consist of the units in
the sample together with their associated values of the variable of interest and any
auxiliary variables recorded. For simplicity, the data can be written d = (s, ys),
where s is the set or sequence of units selected and ys represents the y-values in
the sample. Let p denote the sampling design giving for every possible sample
the probability that it is the one selected. Now in general, the design can depend
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136 design and model

on auxiliary variables x that are known for the whole population and even on the
variable of interest y. For example, in surveys that rely on volunteers or that involve
nonresponse, the probability of volunteering or of responding, and hence being in
the sample, is often related to the variable of interest. The adaptive sampling
designs in the last part of this book also depend on the variable of interest. Thus,
the sampling design can be written p(s|y).

The likelihood function is thus the probability that the sample s is selected and
the values ys are observed and can be written

Ld(θ) =
∑

p(s|y)f (y; θ)

where the sum is over possible realizations of the population y that are consistent
with the observed data d . Since the y-values in the sample are fixed by the data,
the sum is over all possible values ys for the units not in the sample.

An important point to note is that in general the likelihood function depends on
both the design and the model. A prevalent mistake in statistics and other fields is
to analyze data through careful modeling but without considering the procedure by
which the sample is selected. The “likelihood” based on the model only, without
consideration of the design, was termed the face-value likelihood by Dawid and
Dickey (1977) because inference based on it alone takes the data at face value
without considering how the data were selected.

There are certain conditions, however, under which the design can be ignored
for inference. For any design in which the selection of the sample depends on
y-values only through those values ys included in the data, the design probability
can be moved out of the sum and forms a separate factor in the likelihood. Then
the likelihood can be written

Ld(θ) = p(s|ys)
∑

ys

f (y; θ)

The design then does not affect the value of estimators or predictors based on
direct likelihood methods such as maximum likelihood or Bayes estimators. For
any such “ignorable” design, the sum in the likelihood above, over all values of
y leading to the given data value, is simply the marginal probability of the y and
values associated with the sample data. This marginal distribution depends on what
sample was selected but does not depend on how that sample was selected. For
likelihood-based inference with a design ignorable in this sense, the face-value
likelihood gives the correct inference.

Likelihood-based inference, such as maximum likelihood estimation or predic-
tion and Bayes methods, is simplified if the design can be ignored at the inference
stage. The fact that the sampling design does not affect the value of a Bayes or
likelihood-based estimator in survey sampling was noted by Godambe (1966) for
designs that do not depend on any values of the variable of interest and by Basu
(1969) for designs that do not depend on values of the variable of interest outside
the sample. Scott and Smith (1973) showed that the design could become relevant
to inference when the data lacked information about the labels of the units in the

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by C

olorado State U
niversity, W

iley O
nline L

ibrary on [30/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



likelihood function in sampling 137

sample. Rubin (1976) gave exact conditions for a missing data mechanism—of
which a sampling design can be viewed as an example—to be relevant in frequen-
tist and likelihood-based inference. For likelihood-based methods such as maximum
likelihood and Bayes methods, the design is “ignorable” if the design or mecha-
nism does not depend on values of the variable of interest outside the sample or on
any parameters in the distribution of those values. For frequency-based inference
such as design- or model-unbiased estimation, however, the design is relevant if it
depends on any values of the variable of interest, even in the sample. Scott (1977)
showed that the design is relevant to Bayes estimation if auxiliary information used
in the design is not available at the inference stage. Sugden and Smith (1984) gave
general and detailed results on when the design is relevant in survey sampling
situations. Thompson and Seber (1996) discuss the underlying inference issues for
adaptive designs, in which the selection procedure deliberately takes advantage of
observed values of the variable of interest (and see the descriptions of these designs
in later chapters of this book).

The concept of design ignorability thus depends on the model assumed, the
design used, and the data collected. It is important to underscore that a design
said to be “ignorable” for likelihood-based inference might not be ignorable for
a frequentist-based inference, such as model-unbiased estimation, and that even
though a design may be ignorable at the inference stage, in that, for example, the
way an estimator is calculated does not depend on the design used, the design is
still relevant a priori to the properties of the estimator. Ironically, in the real world,
it is quite possible that the only data sets for which the designs are truly “ignorable”
for inference purposes are those that were obtained through deliberately planned
and carefully implemented sampling designs.
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